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Women underrepresentation in science has frequently been
associated with women being less productive than men
(i.e. the gender productivity gap), which may be explained
by women having lower success rates, producing
science of lower impact and/or suffering gender bias. By
performing global meta-analyses, we show that there is a
gender productivity gap mostly supported by a larger
scientific production ascribed to men. However, women
and men show similar success rates when the researchers’
work is directly evaluated (i.e. publishing articles). Men’s
success rate is higher only in productivity proxies
involving peer recognition (e.g. evaluation committees,
academic positions). Men’s articles showed a tendency to
have higher global impact but only if studies include self-
citations. We detected gender bias against women in
research fields where women are underrepresented (i.e.
those different from Psychology). Historical numerical
unbalance, socio-psychological aspects and cultural factors
may influence differences in success rate, science impact
and gender bias. Thus, the maintenance of a women-
unfriendly academic and non-academic environment may
perpetuate the gender productivity gap. New policies to
build a more egalitarian and heterogeneous scientific
community and society are needed to close the gender gap
in science.
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1. Introduction

One is not born, but rather becomes, woman [1]

Women have traditionally been, and continue to be, underrepresented in science. Even though the
percentage of women in science varies across regions, only 28.4% of the research and development
employees in the world are female [2]. Gender inequalities are especially flagrant at the latest stages
of the academic career when the ‘leak’ of female scientists out of the academic world is much larger
than that of men [3-5]. Globally, women represent 53% of bachelor’s graduates, 43% of PhD
graduates and 28% of researchers [2]. This underrepresentation of female scientists can affect the
quality and competitiveness of research centres, as ideas from heterogeneous groups are more feasible,
effective and innovative [2,6]. Moreover, women should have the same opportunities as men to
develop and present their own imprinting in the scientific endeavour to contribute to society [2].

The factors leading to the underrepresentation of women in science (i.e. the gender gap) are still
under debate. One of the main claims is that women are less productive than men (i.e. that there is a
gender productivity gap), and thereby, they author fewer scientific papers, receive fewer grants and
are hired less frequently than men [5]. However, these claims do not necessarily mean that male
scientists outperform their female counterparts. Many interacting socio-psychological and cultural
factors may underlie the gender productivity gap. Men as a group may submit more papers and
apply for more grants or faculty positions because they are more productive in a per capita basis,
because they outnumber women (i.e. the gender gap itself) or because they persist longer in the
scientific career than women, none of which seem to be determined solely by merit [7,8].
Alternatively, science produced by men may be of higher quality, leading to more grants or faculty
positions. Some studies have found that papers authored by male scientists are more cited than those
of female scientists [9], but this is not always the case [7,9]. Finally, conscious or unconscious gender
bias against women in science may negatively affect their productivity. For example, Moss-Racusin
et al. [10] found through an experimental approach that scientists rated a female candidate for a
technician position to be less competent and hireable than a male candidate with an identical
academic background. Such gender bias against women contributes to the productivity gap because it
implies that a woman scientist needs to outperform a man to be perceived and evaluated as similar.

Many researchers and international organizations have raised their voices about the importance of
addressing the gender inequality problem in science [2,11-15]. Such concern with gender parity in
science has led to increasing efforts to promote female entrance and persistence in academia, for
instance, by applying specific faculty programmes or promoting double-blind peer-review to avoid
gender bias in the evaluation processes [16,17]. However, deciding on the best strategies to achieve
gender equality in science implies deep knowledge of the causes underlying gender productivity
differences, which is hard mostly because of the lack of systematic, thoughtful quantitative review
studies of such causes. How does productivity vary among male and female scientists? Are
productivity differences explained by a different success rate or only by the number of trials of each
gender? Do men produce higher impact science? Is there a gender bias against women in science that
can be evidenced by experimental studies? In an attempt to answer these questions, we quantitatively
reviewed 110 studies (figure 1) evaluating gender differences in scientific productivity and their likely
causes. First, we investigated gender differences in productivity both globally and across different
research fields, periods of time and proxies of productivity. Then, we compared the success rate and
the impact of scientific outcomes between genders as likely explanations of productivity patterns.
Finally, we quantitatively reviewed results from experimental studies evaluating gender bias in
science across different research fields.

2. Methods

2.1. Data compilation

We conducted a survey of published studies exploring different aspects of the differences in
academic productivity between male and female scientists. On 27 April 2017, we collected
candidate articles by searching the ISI Web of Knowledge database using the following
combination of terms: (gap OR bias*) AND (gender OR ‘women in science’) AND (productivity
OR publication* OR citation* OR ‘research performance” OR grant OR referee*). The overall search
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Figure 1. PRISMA flow diagram representing the flow of information through the decision process of searching and inclusion of
articles and observations in the meta-analyses (modified from Moher et al. [18]). k, number of articles; o, number of observations.

led to 1086 candidate articles. Such articles were manually screened through title and summary to
check that they included one of the four questions of our study (figure 1). The screening was done
by the three authors and followed a conservative approach, so that only articles that were clearly
out of the scope of the study were excluded at this point (e.g. articles comparing disease
prevalence between males and females). We also scanned the bibliographies of the selected
articles, which led to the addition of 101 new studies that were not originally detected in the first
search in the ISI Web of Knowledge (figure 1).

The full text of the selected articles was reviewed to check their suitability for our meta-analyses
following our eligibility criteria checklist (electronic supplementary material, table S1). First of all, we
evaluated if the article quantitatively explored at least one of our four questions and provided the
statistics required for the meta-analysis. Then, we assessed if the response variable evaluated, the
study design and data type were included in our predefined list (see electronic supplementary
material, table S2). When we found one study design, data or response variable that was not
originally in our list but that we thought it could successfully address at least one of our questions,
we personally discussed its inclusion. We also excluded opinion articles and studies that addressed
our questions by means of reviews or surveys. Articles comparing wages between men and women
were not considered, even if they were scientists. The three authors carefully extracted the required
data from the text or tables in the articles (electronic supplementary material, datasets S1-S5). When
the required data were only reported in graphical form, graphics were scanned and data were
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extracted with DataThief III [19]. If an article explored one of our questions but lacked data, we contacted [ 4 |
authors and asked for such data (number of articles (k) = 10).

When possible, articles reporting data from different journals were included as different observations,
but only if they came from different research fields (electronic supplementary material, table S1). We
separated observations when they came from different geographical regions (e.g. continent) or
research positions (e.g. assistant and full professor). However, if an article evaluated different aspects
of the same data (e.g. hierability and quality of a CV; women as first or last authors), we only
included one of the proxies. When an article reported multiple observations across a given time
period, each observation was considered different only when the time difference among observations

E-

was at least one decade. When such time difference was smaller, we only considered the most recent
observation.

We created one dataset for each of the four study questions (electronic supplementary material,
datasets S1-S5), except for the first question for which we created two datasets (electronic
supplementary material, datasets S1 and S2). During the extraction process, we filled each dataset
with the studies that directly addressed the specific question to be analysed. Some articles were
suitable to investigate more than one question; thus, they were included in more than one dataset.

*sosi/Jeunof/6106uiysgnd/aposjedos

2.2. Q1: differences in scientific productivity

Two kinds of data addressed our first research question, i.e. how scientific productivity varies among
male and female scientists: (i) individual-based studies comparing the average productivity of men
and women (i.e. the sample unit was the researcher), and (ii) group-based studies exploring the
proportion of a given productivity proxy (e.g. articles published in a given journal) attributed to men
and women (i.e. the sample unit was the article). We decided to analyse them separately because the
patterns emerging from these two different kinds of data may be explained by different mechanisms
(electronic supplementary material, datasets S1 and S2).

We used Hedges’ d [20] to measure the effect size of gender on researcher’s productivity in
individual-based studies. To calculate such effect size, we used the mean, standard deviation and
sample size information for male and female researchers for the corresponding productivity proxy in
each primary study. Positive Hedges’ d effect sizes indicate higher male productivity, whereas
negative ones indicate higher female productivity. The effect size of gender on researcher’s
productivity in group-based studies was measured by calculating the raw proportion. Such raw
proportion was calculated as the number of productivity outputs attributed to men divided by the
total number of productivity outputs [21]. Raw proportion values higher than 0.5 indicate higher male
productivity, whereas those smaller than 0.5 indicate higher female productivity.

We performed hierarchical mixed-effects meta-analyses, which considered the lack of independence
among the effect sizes of observations obtained from the same article. Both an article-level and an
observation-level random effect were included as nesting factors to incorporate such lack of
independence. Heterogeneity among effect sizes within each dataset was assessed by calculating the
Qiotal and testing the assumption of homogeneity using a x* distribution [20]. To estimate the
magnitude of the true dispersion (real differences among effect sizes), we calculated the I?, which
represents the proportion of variance attributable to the between-study variance and not to sampling
error [22]. We rejected the assumption of homogeneity and found a high degree of heterogeneity
among the effect sizes (I* > 80% for all analyses; electronic supplementary material, table S3).

In an attempt to explain residual heterogeneity on the gender productivity gap, we ran additional
analyses including predictor variables (moderators) that could potentially explain effect size variation.
In the dataset concerning the gender productivity gap in group-based studies, we performed three
different mixed-effects meta-analyses. We tested the effect of the following moderators: (i) research
field studied (biological science, social science, health or TEMCP—initials for technology,
engineering, mathematic, chemistry and physics), (ii) the century in which the primary data were
collected (twentieth or twenty-first century), and (iii) the type of productivity proxy evaluated
(peer-reviewed publications, research positions, patents, grants and scientific evaluation committees
such as positions in journal editorial boards or grant committees). We examined the p-values of
Qbetween Statistics, which describe if the variation in effect sizes can be explained by differences
among the categories of each moderator. The average of effect sizes was considered significantly
different from zero if their 95% confidence intervals did not include the zero value for Hedges” d or
the 0.5 value for raw proportion.
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2.3. Q2: differences in success rate

To investigate differences in success rate among male and female scientists (question 2; electronic
supplementary material, dataset S3), we used the natural log of the odds ratio (In(OR)) [20]. To
calculate it, we used the number of successful and failed attempts of male and female scientists. For
example, when the productivity proxy was ‘articles’, the number of successful and failed attempts
was the number of published and rejected articles in a scientific journal, respectively. Positive values
of In(OR) indicate that men have higher success rate than women, whereas negative ones indicate
higher female success rate.

Data were analysed following the same approach as for Q1. For this dataset, the moderators that we
tested were (i) research field and (ii) the type of productivity proxy. Effect sizes were considered
significantly different from zero if their 95% confidence intervals did not include the zero value
for In(OR).

2.4. Q3: differences in scientific impact

To explore differences in the impact of the science produced by male and female scientists (question 3;
electronic supplementary material, dataset S4), we calculated the effect size Hedges” d of studies
evaluating quantitative measures of citation numbers, H-index or modified versions of this index
among genders. All studies used an impact measure that in some way included the citation counts of
articles published by men and women. To calculate the Hedges’ d, we used the mean and the
standard deviation of the impact measure and the sample size reported in each study. Positive
Hedges’ d effect sizes indicate higher impact of male than female scientists, whereas negative ones
indicate higher female impact.

Data were analysed following the same approach as for Q1. In this dataset, the moderator that we
tested was the inclusion or not of self-citations in the impact measure.

2.5. Q4: experimental gender bias

Results from experimental studies that evaluated gender bias in science (question 4; electronic
supplementary material, dataset S5) were meta-analysed by calculating the effect size of gender bias
as the Hedges’ d. To obtain this effect size, we used the mean and the standard deviation of the
quality rating received by the same piece of science attributed to either a male or a female scientist
(according to the name assigned to the author) and the sample size of each study. In a few studies,
data were provided as a proportion (e.g. the proportion of the positive and negative reviews of the
same work received by male and female authors). For such studies, we first calculated In(OR),
converted it to Cohen’s d and finally to the common index Hedges’ d to combine all gender bias
observations in the same meta-analysis [20]. Positive values of Hedges” d indicate gender bias against
women, whereas negative ones indicate gender bias against men. Data were analysed following the
same approach than for Q1. Our dataset mostly comprised observations from studies conducted
within the Psychology field (61.1%), thus we tested the effect of a moderator that recorded whether or
not the study was from the Psychology field.

2.6. Publication bias assessment

To address the existence of publication bias and the robustness of the results in each of the five datasets,
we used a modification of the Egger’s regression appropriate for hierarchical models and sensitivity
analyses. We ran Egger’s regressions using the residuals of the hierarchical models as the response
variable and the effect size precision as the moderator [22]. If the intercept of the Egger’s regression
was significantly different from zero, this was taken as an evidence of publication bias. Graphical
assessment of publication bias (e.g. funnel plots) was not used because its use is still debatable for
hierarchical models. We evaluated the sensitivity of all analyses by comparing fitted models with and
without effect sizes that were defined as influential outliers. Influential outliers are those extreme
values whose exclusion leads to a considerable change in the results of the meta-analysis. Such
extreme values were identified using two indicators: hat values and standardized residual values [23].
Effect sizes with hat values greater than two times the average hat value of each dataset and
standardized residual values exceeding 3.0 were considered influential outliers [23,24].
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Figure 2. The gender productivity gap in science. The mean effect sizes + 95% confidence intervals corresponding to (a)
individual- and (b) group-based studies comparing productivity between men and women scientists (Piygividuat = 0.0012,
Pgroup < 0.0001). The number of observations included in each meta-analysis is reported within parentheses. For group-based
studies, the effect sizes of gender productivity depending on the productivity proxy (p = 0.036), the research field (p =
0.189) and the time period (p = 0.951) are also shown. The vertical dashed line in each graphic indicates no difference
between men and women scientists. Positive effect size values indicate higher men productivity, whereas negative effect sizes
indicate higher women productivity. Asterisks denote the mean effect sizes significantly different from zero for Hedges' d and
0.5 for raw proportion (p << 0.05). lcons illustrate the type of primary response variable included in each meta-analysis.

We used the package metafor (v. 2.0-0) [21] in the R environment (v. 3.5.3, R Core Team, 2019) for all
statistical analysis.

3. Results

We retrieved 1185 articles from our database search, 110 of which remained suitable for inclusion in
meta-analyses (figure 1). From these 110 articles, we calculated 264 effect sizes partitioned into five
datasets, according to the question they addressed (electronic supplementary material, datasets S1-S5).

3.1. Gender productivity

The meta-analysis of studies investigating mean productivity per capita (i.e. individual-based studies)
showed that men published more articles than women (Hedges” d = 0.418, number of observations
(0) =18, CI = 0.165-0.670; figure 2a). Likewise, the meta-analysis of studies comparing the proportion
of articles, grants, etc. attributed to men and women (gender-group-based studies) showed that men
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produced on average 2.4 times more science than women (raw proportion = 0.706, 0 = 144, CI = 0.666— -
0.746; figure 2b). Differences in productivity among gender groups did not change in the twenty-first
century compared to the twentieth (p = 0.951; twenty-first century: raw proportion = 0.704, 0 =77,
CI = 0.655-0.754; twentieth century: raw proportion = 0.713, 0 = 51, CI = 0.654-0.772, figure 2b). The
gender-group productivity gap was detected in all research fields, being the largest in TEMPC
sciences (raw proportion TEMPC = 0.747, o =24, CI=0.660-0.833, figure 2b), but the differences
among areas were not significant (p = 0.189). The productivity of men was higher than that of
women for all proxies. However, gender differences varied among proxies (p = 0.036; figure 2b). The
gender productivity gap measured by group representation in scientific evaluation committees (e.g.
research positions, academic evaluations, journal editorial boards) was higher than the gap found for
articles production (p = 0.005; evaluation committees: Hedges’ d = 0.805, o =24, CI=0.718-0.892;
articles: Hedges” d = 0.671, 0 = 103, CI = 0.623-0.716, figure 2b).

~

*sosi/Jeunof/6106uiysgnd/aposjedos

3.2. Gender success rate

Men showed a higher global success rate than women when productivity was weighted by the number
of trials (log odds ratio=0.317, 0 =43, CI=0.141-0.494; figure 3a). However, when analysed by
research field, we found that men tended to have more success than women only in Health sciences
(log odds ratio = 0.419, 0 = 21, CI = 0.164-0.674; figure 3a). Productivity proxy significantly explained
part of the variability in success rates among genders (p < 0.001). Men were more successful in
gaining faculty or research positions (log odds ratio = 0.368, 0 = 3, CI = 0.003-0.733), nominations for
evaluation committees (log odds ratio =1.155, 0 =2, CI=0.722-1.587) or grants (log odds ratio =
0.169, 0 =27, CI = 0.023-0.315) than expected by their number of trials, but success rate was the same
for publishing research articles (log odds ratio = 0.080, 0 = 8, CI = —0.169-0.327; figure 3a).

995L8L9,35u3d0)gsy

3.3. Gender science impact

The meta-analysis of studies comparing citation numbers, H-index or modified versions of this index
among genders showed that there is a tendency for men’s articles to have globally more impact than
those of women (Hedges” d = 0.152, 0 =37, CI = —0.008-0.312; p = 0.063; figure 3b). Such difference
between genders disappeared when we meta-analysed studies in which self-citations were excluded in
the measurement of article impact (included: Hedges” d = 0.172, 0 = 31, CI = —0.0129-0.357, p = 0.07;
excluded: Hedges’ d =0.076, 0 =6, CI= —0.350-0.508, p=0.73; figure 3b). It is important to
highlight that the sample size of the studies with self-citation excluded is reduced, compromising the
statistical power of this result.

3.4. Experimental gender bias

We quantitatively reviewed results from experimental studies comparing how a CV or a scientific
document (i.e. a paper or a conference abstract) attributed to men and women is perceived and
evaluated. In such studies, the names of the authors are experimentally changed to assess the effect of
gender in their evaluation. We did not find overall differences in the evaluation of the research and
academic background of scientists based on gender (Hedges” d =0.177, 0 =18, CI = —0.168-0.522;
figure 3c). However, we found evidence of experimental gender bias when only studies from areas
different to Psychology were considered (other areas: Hedges” d =0.491, o=6, CI=0.221-0.761;
Psychology: Hedges” d = 0.104, 0 =11, CI = —0.199-0.406, figure 3c). The sample size of the studies
from areas other than Psychology is reduced, so these results need to be taken with caution.

3.5. Publication bias

According to Egger’s regressions, there was no sign of publication bias in the datasets (electronic
supplementary material, table S4), with the exception of question 1la about per capita differences in
scientific productivity (p = 0.051). Additionally, we did not detect influential outliers in any of the
datasets (electronic supplementary material, figure S1).
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Figure 3. Factors that have been associated with the gender productivity gap in science. The mean effect size 4 95% confidence
intervals of (a) gender success rate (p = 0.0004), (b) gender science impact (p = 0.063) and (c) experimental gender bias (p =
0.315). The number of observations included in each meta-analysis is reported within parentheses. The effect size of gender
depending on the research field (p = 0.697) and the productivity proxy (p << 0.0001) are shown for success rate. The effect
of self-citations on science impact is also shown (p = 0.73). The effect size of gender depending on the research field
(Psychology or not, p = 0.0002) is shown for experimental gender bias. The vertical dashed line in each graphic indicates no
difference between men and women scientists. Effect size values in the right side of each graphic indicate higher men
productivity, whereas those in the left side indicate higher women productivity. Asterisks denote the mean effect sizes
significantly different from zero (p << 0.05). lcons illustrate the type of primary response variables included in each meta-analysis.

4. Discussion
4.1. The gender productivity gap

Overall, our results support the existence of a gender productivity gap in science. Men published more
articles per capita and had more scientific outputs (articles, grants, research positions) as a group. This
gender productivity gap has often been used as evidence for meritocracy, being the main cause of the
underrepresentation of women in science (i.e. the gender gap). Interestingly, our results showed that
most data supporting higher men productivity in science come from gender-group-based studies on
productivity (sevenfold more abundant than individual-based ones). This highlights that meritocratic
arguments are mainly based on results from group-based studies that do not control the historical
overrepresentation of men in the scientific system. If such historical difference is not controlled, it is
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rather expected that men as a group produce most of the science, independently of their individual [ 9 |
productivity. However, it might be misleading to solely attribute gender differences in productivity to
innate differences in scientific abilities between men and women. Many authors have discussed how
the development of scientific careers in man-dominated scientific landscapes, particularly at the
highest levels of the scientific power structure, may benefit men’s careers, mainly by increasing their
visualization and rewards [2,7,8,25,26]. Such man-landscape may cause a cumulative disadvantage to
the scientific career of women, which has been referred as the ‘Matilda effect’ [27].

The analysis of the different factors affecting productivity may shed light on the importance of
considering the effects of the man-dominated scientific landscape in which men and women develop
their scientific careers. Our meta-analysis showed that the size of the gender productivity gap
observed in the twentieth century is similar to the one registered in the twenty-first century, which
implies that the increase in the representation of women in science in some regions of the world,
particularly after the implementation of specific gender policies [2,5,28], has not been enough to deal
with the consequences of a historical gender-unbalanced scientific landscape. The marginal differences

*sosi/Jeunof/6106uiysgnd/aposjedos

found in the gender-group productivity gap among research fields may reflect a persistent
overrepresentation of men in some research areas [11,29], suggesting that stronger area-specific gender
policies are still needed. Last, the overrepresentation of men in evaluation committees may also be the
by-product of the ‘Matilda effect’. Such overrepresentation can be expected because men are more
productive and the selection of scientists for these committees may arise as recognition of
productivity. However, the overrepresentation of men as authors of published articles, one of the
main proxies of scientists’ productivity, was 20% smaller than their overrepresentation in scientific
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committees. Thus, unravelling how differences in individual productivity between men and women
are influenced by the man-dominated scientific landscape in which researchers develop their careers
might be of major importance to evaluate the factors producing the gender gap.

4.2. Gender success rate

By comparing men’s and women’s success rates in science, we aimed to explore the most parsimonious
explanation underpinning gender productivity differences: the number of trials (i.e. the number of
submissions to journals or individuals trying research positions). Interestingly, our meta-analysis on
group-based studies showed that both genders have the same success rate in most research fields and
when the researcher’s work is directly evaluated (e.g. success rate in publishing articles). By contrast,
when productivity proxies involve some kind of peer recognition of the researcher’s work (e.g.
evaluation committees, research positions, grants), men showed higher success rates. These results
move forward the discussion on the causes of the gender productivity gap by suggesting that
differences in the number of published articles, which is one of the main variables used to evaluate
productivity within the scientific community, may be explained by differences in the number of trials.
Why do men submit more articles? As discussed before, men as a group may try more because of
their overrepresentation in the scientific system, especially at the highest level of academy [2-5]. In
top research positions, scientists usually have larger networks of collaborators [25,30] and receive
more funding [31], which may allow them to submit more manuscripts and consequently be more
productive [32]. On the contrary, women may be disfavoured in the number of trials they can achieve.
Moreover, the fact that women have the same success rate in publishing articles as men but do not
get research positions, receive grants or are proposed for evaluation committees at the same rate as
men may discourage women’s scientific careers. These results strongly support the idea that
productivity itself may be highly affected by peer recognition and therefore by the scientific landscape
in which researchers develop their careers.

Another likely set of explanations of why men may try and produce more is associated with socio-
psychological and cultural factors favouring them [7,28]. For instance, it has been reported that men
and women dedicate different time to research activities. Women devote more time to teaching or
administration [3,33—-35], which has been presented as personal choices. However, such choice might be
highly influenced by researchers being educated and developing their scientific career in a society that
emphasizes gender science stereotypes (i.e. associating research more with men than with women [36]).
In this vein, since women have also historically and socially been selected for and have performed
domestic and family caring labour, it can be expected that they tend to prioritize family life against
work [37-39]. Having less time to do science may affect women'’s access to funding sources [25,31,40],
their ability to make visible their work and to construct a network of collaborators, three key scientific
tasks directly related to individual productivity [28,30]. Thus, our results may highlight the importance



of evaluating how socio-psychological and cultural factors may modulate productivity in the scientific [ 10 |
system by affecting the number of times that men and women can submit a paper or a grant proposal
or even participate in evaluation committees. If these factors still play an important role in determining
gender productivity, then gender bias will still affect gender performance [7,8].

4.3. Gender science impact

Another explanation for the gender productivity gap that we quantitatively reviewed is that men
produce research of higher impact. We found a tendency towards men having globally more scientific
impact than women. However, such difference between genders disappeared when impact was
computed by excluding self-citation. Self-citation can be the side effect of either men’s authority in a
given field by constructing on their past work or the consequence of self-promotion guided by self-
confidence and mediated by socio-psychological influences [31,41]. Moreover, self-citation rate highly
influences the most commonly used citation metric (i.e. the H-index [41]). Therefore, by using such
index to evaluate researchers’ contributions, the scientific community can be rewarding scientific
quality but also self-confident behaviour. Men tend to have higher self-citation rates than women,
which may explain why their impact increases with time at a higher rate than that of women [41].
Impact metrics are also strongly positively correlated with productivity [41-43]. Such correlation
generates a lottery effect [9] where the chance of having more articles with higher citation rates
increases among more productive researchers. Citation patterns may also be the result of gender bias
against women, as a recent study showed that articles authored by women received 10% fewer
citations than expected if the same articles were written by men [44]. If the higher productivity of
men is strongly affected by socio-psychological and cultural factors favouring the development of
their careers, then by measuring researchers’ performance with both productivity and impact, the
gender gap will have twofold influence on the productivity gap. Thus, rethinking current ways to
assess the contributions of scientists to assign grants, hire and promote them in the scientific system
would be critical to shorten the gender productivity gap.
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4.4. Experimental gender bias

The last and non-excluding explanation for the gender productivity gap is conscious and unconscious
gender bias against female scientists. Overall, the evaluation of the research and academic background
of scientists did not show bias based on gender. However, when we explicitly separated studies by
the research field in which they were carried out, gender bias against women emerged in the group of
experiments performed in research fields other than Psychology. The fact that studies in the
Psychology field did not show evidence of gender bias may be attributed to the similar representation
of both genders in this research field [45]. On the other hand, as differences in the perception about
female and male scientists are a broad process affecting many aspects of the scientific life and work
[46], the ability of available experimental studies to detect such bias may be constrained because they
followed only one strategy to measure gender bias (i.e. formal academic evaluations). Thus, our
results highlight the need of both performing more experimental studies measuring gender bias in
research fields where women are more underrepresented (e.g. TEMPC sciences) in order to compare
them with results in more gender-balanced research fields, and evaluating such bias in a more
integrative way by considering the multiple formal and non-formal evaluation processes that
researchers face while developing their academic activities.

5. Conclusion

Globally, our meta-analyses suggest that the historical underrepresentation of women in science itself
and socio-psychological and cultural factors underpinning gender bias against women may modulate
gender differences in productivity perpetuating gender inequality in science. Gender-group
productivity differences are not decreasing with time, even in research fields in which gender
numerical equality has been reached. Thus, much more work needs to be done to exclude gender
inequality. If differences in productivity are linked to the time that researchers can dedicate to do
science and to peer recognition in a male-dominated landscape, and if science impact has an
important component of self-recognition, then socio-cultural gender bias against women may still be a
strong factor promoting such inequality. As for other minorities, serious attempts to change women'’s



underrepresentation in science will need not only to encourage women to enter and persist in the [ 11 |
scientific career, but also new policies oriented to build a more egalitarian and heterogeneous
scientific community and society. Considering new strategies to assess the quality of individual and
group scientific contributions beyond the mantra of quantity may certainly help in this sense, as
academia obsession with quantity may be killing creativity, reflection and human relationships [47].

Data accessibility. The datasets supporting this article have been uploaded as part of the electronic supplementary
material.

Authors” contributions. J.A., E.S.-G. and C.T.C. designed and performed research (i.e. conceived the idea, reviewed the
articles and extracted the data included in the meta-analyses); C.T.C. performed the statistical analyses; J.A., ES.G.
and C.T.C. wrote and edited the paper. All authors gave final approval for publication.

Competing interests. We have no competing interests.

Funding. J.A. (grant nos. 2011/09951-2 and 2012/04941-1), E.S.-G. (grant nos. 2011/17968-2 and 2013/02819-7) and
C.T.C. (grant no. 2012/09794-7) thank FAPESP-Sao Paulo Research Foundation for financial support. ES.-G is
funded by the Spanish Ministry of Economy, Industry and Competitivity (IJCI-2015-24947) and by the Generalitat
Valenciana (SEJI/2018/024).

Acknowledgements. We thank R. Aguilar, R. Pardini, I. Pérez and F. Hidalgo for comments and insights on previous
versions of this manuscript; P. Nieto for insightful discussions about the role of feminisms in constructing a more
egalitarian scientific community; E. Santos for discussion on the construction of the statistical models; and
J. Hilgard and one anonymous reviewer for their highly valuable comments and discussions. We thank Chameleon
Design, D. Hetteix, Lucid Formation, H. Draiman, Artem Kovyazin, and Vectors Market for icons design (www.
thenounproject.com). We also want to thank all the researchers who provided us with raw data upon request when
they were missing from the original manuscript. J.A. is a researcher of CONICET (Consejo Nacional de
Investigaciones Cientificas y Técnicas, Argentina).

*sosi/Jeunof/6106uiysgnd/aposjedos

995L8L9,35u3d0)05-y

References

de Beauvoir S. 1949 Le deuxiéme sexe. Paris, 9.
France: Gallimard.

Kelly CD, Jennions MD. 2006 The h index and
career assessment by numbers. Trends Ecol. Evol.

achieve gender balance. PLoS ONE 11,
€0163376. (doi:10.1371/journal.pone.0163376)

United Nations Educational Scientific and 21, 167-170. (doi:10.1016/j.tree.2006.01.005) 18.  Moher D, Liberati A, Tetzlaff J, Altman DG,
Cultural, Organization. 2015 UNESCO Global 10.  Moss-Racusin CA, Dovidio JF, Brescoll VL, Altman D, Antes G et al. 2009 Preferred reporting
Science Report: Towards 2030. See http:/ Graham MJ, Handelsman J. 2012 Science items for systematic reviews and meta-analyses:
unesdoc.unesco.org/images/0023/002354/ faculty’s subtle gender biases favor male the PRISMA statement. PLoS Med. 6, €1000097.
235406¢.pdf%5Cnhttp:/unesdoc.unesco.org/ students. Proc. Natl Acad. Sci. USA 109, (doi:10.1371/journal.pmed.1000097)
images/0023/002354/235407e.pdf. 16 474-16 479. (doi:10.1073/pnas. 19.  Tummers B. 2006 DataThief il manual v. 1.1.
O'Brien KR, Hapgood KP. 2012 The academic 1211286109) Manual, pp. 1-52. See www.datathief.org
jungle: ecosystem modelling reveals why 1. Elsevier. 2017 Gender in the Global Research 20.  Borenstein M, Hedges L, Higgins J, Rothstein H.
women are driven out of research. Oikos 121, Landscape. Analytical Services Report. See 2009 Introduction to meta-analysis. Oxford, UK:
999-1004. (doi:10.1111/j.1600-0706.2012. https://www.elsevier.com/__data/assets/pdf _ Wiley.

20601.x) file/0008/265661/ElsevierGenderReport_final_ 21, Viechtbauer W. 2010 Conducting meta-analyses
Shaw AK, Stanton DE. 2012 Leaks in the for-web.pdf?utm_source=GSR(&utm_ in R with the metafor package. J. Stat. Softw.
pipeline: separating demographic inertia from ampaign=GSRC&utm_medium=GSR(% 36, 1-48. (doi:10.1103/PhysRevB.91.121108)
ongoing gender differences in academia. 5Cnhttps:/www.elsevier.com/research- 22.  Nakagawa S, Santos ESA. 2012 Methodological
Proc. R. Soc. B 279, 3736—3741. (doi:10.1098/ intelligence/resource-library/gender-report% issues and advances in biological meta-analysis.
rspb.2012.0822) 5Cnhttps:/www.elsevier.c. Evol. Ecol. 26, 1253—1274. (doi:10.1007/

Ceci SJ, Williams WM. 2011 Understanding 12. Handelsman J et al. 2005 More women in $10682-012-9555-5)

current causes of women’s underrepresentation science. Science 309, 1190—1191. (doi:10.1126/ 23, Viechtbauer W, Cheung MW-L. 2010 Outlier and
in science. Proc. Natl Acad. Sci. USA science.1113252) influence diagnostics for meta-analysis. Res. Synth.
108, 3157-3162. (doi:10.1073/pnas. 13. Burstein D, Hall-Craggs M, Tempany C. 2015 Methods 1, 112—125. (doi:10.1002/jrsm.11)
1014871108) Many paths to parity for women in science. 24, Habeck CW, Schultz AK. 2015 Community-level
McLeod PL, Lobel SA, Cox TH. 1996 Ethnic Science 350, 286. (doi:10.1126/science.350. impacts of white-tailed deer on understorey
diversity and creativity in small groups. Small 6258.286-a) plants in North American forests: a meta-analysis.
Group Research 27, 248—264. (doi:10.1177/ 14, McNutt M. 2015 Give women an even chance. AoB Plants 7, plv119. (doi:10.1093/aobpla/plv119)
1046496496272003) Science 348, 611. (doi:10.1126/science. 25.  Prpic K. 2002 Gender and productivity

van den Besselaar P, Sandstrom U. 2016 Gender aac4767) differentials in science. Scientometrics 55,
differences in research performance and its 15. Lawler A. 2006 Universities urged to improve 27-54. (doi:10.1023/A:1016046819457)

impact on careers: a longitudinal case study. hiring and advancement of women. Science 26.  Ford H, Brick C, Blaufuss K, Dekens P. 2018
Scientometrics 106, 143—162. (doi:10.1007/ 313, 1712. (doi:10.1126/science.313.5794.1712) Gender inequity in speaking opportunities at
$11192-015-1775-3) 16.  Darling ES. 2015 Use of double-blind peer the American Geophysical Union Fall Meeting.
van den Besselaar P, Sandstrom U. 2017 Vicious review to increase author diversity. Conserv. Nat. Hum. Behav. 2018, 3-8. (doi:10.1038/
circles of gender bias, lower positions, and Biol. 29, 297-299. (doi:10.1111/cobi.12333) 541467-018-03809-5)

lower performance: gender differences in 17. Bakker MM, Jacobs MH. 2016 Tenure track 27. Rossiter MW. 1993 The Matthew Matilda effect

scholarly productivity and impact. PLoS ONE 12,
1-16. (doi:10.1371/journal.pone.0183301)

policy increases representation of women in
senior academic positions, but is insufficient to

in science. Soc. Stud. Sci. 23, 325—341. (doi:10.
1177/030631293023002004)


http://www.thenounproject.com
http://www.thenounproject.com
http://unesdoc.unesco.org/images/0023/002354/235406e.pdf%5Cnhttp://unesdoc.unesco.org/images/0023/002354/235407e.pdf
http://unesdoc.unesco.org/images/0023/002354/235406e.pdf%5Cnhttp://unesdoc.unesco.org/images/0023/002354/235407e.pdf
http://unesdoc.unesco.org/images/0023/002354/235406e.pdf%5Cnhttp://unesdoc.unesco.org/images/0023/002354/235407e.pdf
http://unesdoc.unesco.org/images/0023/002354/235406e.pdf%5Cnhttp://unesdoc.unesco.org/images/0023/002354/235407e.pdf
http://unesdoc.unesco.org/images/0023/002354/235406e.pdf%5Cnhttp://unesdoc.unesco.org/images/0023/002354/235407e.pdf
http://unesdoc.unesco.org/images/0023/002354/235406e.pdf%5Cnhttp://unesdoc.unesco.org/images/0023/002354/235407e.pdf
http://dx.doi.org/10.1111/j.1600-0706.2012.20601.x
http://dx.doi.org/10.1111/j.1600-0706.2012.20601.x
http://dx.doi.org/10.1098/rspb.2012.0822
http://dx.doi.org/10.1098/rspb.2012.0822
http://dx.doi.org/10.1073/pnas.1014871108
http://dx.doi.org/10.1073/pnas.1014871108
http://dx.doi.org/10.1177/1046496496272003
http://dx.doi.org/10.1177/1046496496272003
http://dx.doi.org/10.1007/s11192-015-1775-3
http://dx.doi.org/10.1007/s11192-015-1775-3
http://dx.doi.org/10.1371/journal.pone.0183301
http://dx.doi.org/10.1016/j.tree.2006.01.005
http://dx.doi.org/10.1073/pnas.1211286109
http://dx.doi.org/10.1073/pnas.1211286109
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
https://www.elsevier.com/__data/assets/pdf_file/0008/265661/ElsevierGenderReport_final_for-web.pdf?utm_source=GSRC&utm_campaign=GSRC&utm_medium=GSRC%5Cnhttps://www.elsevier.com/research-intelligence/resource-library/gender-report%5Cnhttps://www.elsevier.c
http://dx.doi.org/10.1126/science.1113252
http://dx.doi.org/10.1126/science.1113252
http://dx.doi.org/10.1126/science.350.6258.286-a
http://dx.doi.org/10.1126/science.350.6258.286-a
http://dx.doi.org/10.1126/science.aac4767
http://dx.doi.org/10.1126/science.aac4767
http://dx.doi.org/10.1126/science.313.5794.1712
http://dx.doi.org/10.1111/cobi.12333
http://dx.doi.org/10.1371/journal.pone.0163376
http://dx.doi.org/10.1371/journal.pmed.1000097
http://www.datathief.org
http://dx.doi.org/10.1103/PhysRevB.91.121108
http://dx.doi.org/10.1007/s10682-012-9555-5
http://dx.doi.org/10.1007/s10682-012-9555-5
http://dx.doi.org/10.1002/jrsm.11
http://dx.doi.org/10.1093/aobpla/plv119
http://dx.doi.org/10.1023/A:1016046819457
http://dx.doi.org/10.1038/s41467-018-03809-5
http://dx.doi.org/10.1038/s41467-018-03809-5
http://dx.doi.org/10.1177/030631293023002004
http://dx.doi.org/10.1177/030631293023002004

28.

29.

30.

31

32,

33

34,

Beaudry C, Lariviere V. 2016 Which gender
gap? Factors affecting researchers’ scientific
impact in science and medicine. Evol. Hum.
Behav. 45, 1790—1817. (doi:10.1016/j.respol.
2016.05.009)

Holman L, Stuart-Fox D, Hauser CE. 2018 The
gender gap in science: how long until women
are equally represented? PLoS Biol. 16, 1-20.
(doi:10.1371/journal.pbio.2004956)

Beaudry C, Allaoui S. 2012 Impact of public and
private research funding on scientific
production: the case of nanotechnology. Evol.
Hum. Behav. 41, 1589—1606. (doi:10.1016/j.
respol.2012.03.022)

Slyder JB et al. 2011 Citation pattern and
lifespan: a comparison of discipline, institution,
and individual. Scientometrics 89, 955—966.
(doi:10.1007/511192-011-0467-x)

Cameron EZ, White AM, Gray ME. 2013 Equal
opportunity metrics should benefit all
researchers. Trends Ecol. Evol. 28, 320-321.
(doi:10.1016/j.tree.2013.03.007)

Xie Y, Shauman KA. 1998 Sex differences in
research productivity: new evidence about an
old puzzle. Am. Soc. Rev. 63, 847—870. (doi:10.
2307/2657505)

Desroches CM, Zinner DE, Rao SR, lezzoni LI,
Campbell EG. 2010 Men and women in the life
sciences. Gender Issues 85, 631—639. (doi:10.
1097/acm.0b013e3181d2b095)

35.

36.

37.

38.

39.

Cedi SJ, Ginther DK, Kahn S, Williams WM. 2014
Women in academic science: a changing
landscape. Public Interest 15, 75—141. (doi:10.
1177/1529100614541236)

Eagly AH, Johannesen-Schmidt MC, van Engen
ML. 2003 Transformational, transactional,

and laissez-faire leadership styles: a meta-
analysis comparing women and men. Psychol.
Bull. 129, 569—-591. (doi:10.1037/0033-2909.
129.4.569)

(raig L. 2006 Does father care mean fathers
share? A comparison of how mothers and
fathers in intact families spend time with
children. Gender Soc. 20, 259—281. (doi:10.
1177/0891243205285212)

Fox MF, Fonseca C, Bao J. 2011 Work and family
conflict in academic science: patterns and
predictors among women and men in research
universities. Soc. Stud. Sci. 41, 715—735.
(doi:10.1177/0306312711417730)

Kan MY, Sullivan 0, Gershuny J. 2011 Gender
convergence in domestic work: discerning the
effects of interactional and institutional barriers
from large-scale data. Sociology 45, 234-251.
(doi:10.1177/0038038510394014)

Duch J et al. 2012 The possible role of resource
requirements and academic career-choice risk on
gender differences in publication rate and
impact. PLoS ONE 7, €51332. (doi:10.1371/
journal.pone.0051332)

41.

4.

43.

4,

45.

46.

47.

Cameron EZ, White AM, Gray ME. 2016 Solving m

the productivity and impact puzzle: do men
outperform women, or are metrics biased?
BioScience 66, 245—252. (doi:10.1093/biosci/
biv173)

Pautasso M. 2013 Focusing on publication
quality would benefit all researchers. Trends
Ecol. Evol. 28, 318—320. (doi:10.1016/j.tree.
2013.03.004)

Symonds MRE, Gemmell NJ, Braisher TL,
Gorringe KL, Elgar MA. 2006 Gender
differences in publication output: towards

an unbiased metric of research performance.
PLoS ONE 1, 1-5. (doi:10.1371/journal.pone.
0000127)

Caplar N, Tacchella S, Birrer S. 2017 Quantitative
evaluation of gender bias in astronomical
publications from citation counts. Nat. Astron. 1,
1-4. (doi:10.1038/541550-017-0141)

Meyer M, Cimpian A, Leslie SJ. 2015 Women are
underrepresented in fields where success is
believed to require brilliance. Front. Psychol. 6,
235. (doi:10.3389/fpsyg.2015.00235)
Mendoza-Denton R, Patt C, Richards M. 2018 Go
beyond bias training. Nature 557, 299-301.
(doiz10.1038/d41586-018-05144-7)

Fischer J, Ritchie EG, Hanspach J. 2012
Academia’s obsession with quantity. Trends Ecol.
Evol. 27, 473-474. (d0i:10.1016/j.tree.2012.
05.010)

 sosyjeunol/BioBuysiigndiaanosjefos

.< 9 9 Slg L v 9 , DS o -)ovs-”"H


http://dx.doi.org/10.1016/j.respol.2016.05.009
http://dx.doi.org/10.1016/j.respol.2016.05.009
http://dx.doi.org/10.1371/journal.pbio.2004956
http://dx.doi.org/10.1016/j.respol.2012.03.022
http://dx.doi.org/10.1016/j.respol.2012.03.022
http://dx.doi.org/10.1007/s11192-011-0467-x
http://dx.doi.org/10.1016/j.tree.2013.03.007
http://dx.doi.org/10.2307/2657505
http://dx.doi.org/10.2307/2657505
http://dx.doi.org/10.1097/acm.0b013e3181d2b095
http://dx.doi.org/10.1097/acm.0b013e3181d2b095
http://dx.doi.org/10.1177/1529100614541236
http://dx.doi.org/10.1177/1529100614541236
http://dx.doi.org/10.1037/0033-2909.129.4.569
http://dx.doi.org/10.1037/0033-2909.129.4.569
http://dx.doi.org/10.1177/0891243205285212
http://dx.doi.org/10.1177/0891243205285212
http://dx.doi.org/10.1177/0306312711417730
http://dx.doi.org/10.1177/0038038510394014
http://dx.doi.org/10.1371/journal.pone.0051332
http://dx.doi.org/10.1371/journal.pone.0051332
http://dx.doi.org/10.1093/biosci/biv173
http://dx.doi.org/10.1093/biosci/biv173
http://dx.doi.org/10.1016/j.tree.2013.03.004
http://dx.doi.org/10.1016/j.tree.2013.03.004
http://dx.doi.org/10.1371/journal.pone.0000127
http://dx.doi.org/10.1371/journal.pone.0000127
http://dx.doi.org/10.1038/s41550-017-0141
http://dx.doi.org/10.3389/fpsyg.2015.00235
http://dx.doi.org/10.1038/d41586-018-05144-7
http://dx.doi.org/10.1016/j.tree.2012.05.010
http://dx.doi.org/10.1016/j.tree.2012.05.010

	Unravelling the gender productivity gap in science: a meta-analytical review
	Introduction
	Methods
	Data compilation
	Q1: differences in scientific productivity
	Q2: differences in success rate
	Q3: differences in scientific impact
	Q4: experimental gender bias
	Publication bias assessment

	Results
	Gender productivity
	Gender success rate
	Gender science impact
	Experimental gender bias
	Publication bias

	Discussion
	The gender productivity gap
	Gender success rate
	Gender science impact
	Experimental gender bias

	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


