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ABSTRACT

The development of a more synthetic approach to understanding spatial patterns
in biogeography, particularly of the way in which these patterns interact, con-
stitutes a major challenge for the field. Here we propose some key elements of
such a synthesis for what can broadly be termed ‘ecogeographical rules’, that is
spatial patterns in biological traits. These include understanding: (1) the different
kinds of patterns (intraspecific, interspecific and assemblage), and the distinctions
between them; (2) the unifying role that geographical ranges play in linking the
patterns together; (3) that this unification can be obscured by the methodological
assumptions made in documenting some patterns (e.g. assuming that intraspe-
cific variation does not significantly influence interspecific and assemblage pat-
terns in traits); (4) the implications of other methodological issues for the nature
of observed patterns (e.g. how ranges are located on positional or environmental
axes for interspecific patterns); (5) the need for further development of models
linking different types of traits; (6) the nature of the generality of documented
patterns at all levels, and particularly the difference between the frequency with
which patterns are documented in the literature and the variety of extant species;
and (7) the constraints that the form of intraspecific patterns place on inter-
specific and assemblage patterns, and that interspecific patterns place on
assemblage patterns.
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INTRODUCTION

& Chown, 2003; Lardies & Bozinovic, 2006), life history (e.g.
Fleming & Gross, 1990; Jonas & Geber, 1999; Jenkins &

Three general sets of spatial patterns in biological traits have
long dominated much thinking in biogeography. The first are
spatial patterns in the traits exhibited within individual species,
reflecting their covariation with either positional (e.g. latitude,
longitude, altitude, depth) or environmental (e.g. temperature,
precipitation, salinity, productivity) variables. Commonly it is
assumed that environmental variation can explain positional
variation. These patterns include systematic trends in mor-
phology (principally body size; e.g. Ray, 1960; Chown &
Gaston, 1999; Jonas & Geber, 1999; Ashton et al., 2000;
Ashton, 2002; Ashton & Feldman, 2003; Blanckenhorn &
Demont, 2004; Litzgus et al., 2004; Meiri et al, 2004a;
Blanckenhorn et al., 2006; Yom-Tov & Geffen, 2006), physi-
ology (e.g. Spicer & Gaston, 1999; Hoffmann et al., 2001; Klok
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Hockey, 2001; Cooper et al., 2005; Halsall et al., 2005; Heibo
et al., 2005; Lardies & Bozinovic, 2006), population dynamics
(e.g. Brown, 1984; Philippart et al., 1998; Brewer & Gaston,
2002, 2003; Post, 2005; Crozier & Zabel, 2006) and genetic
variation (e.g. Green et al., 1996; Weeks et al., 2002; Hutch-
ison, 2003; Collinge et al., 2006). Where particular trends are
common and exceptions appear to be sufficiently scarce, some
such patterns have come to be regarded as classical examples of
ecogeographical rules. They include the neo-Bergmannian rule
(sensu James, 1970) or James’s rule (sensu Blackburn et al.,
1999a; namely, an increase in the size of a species towards
higher latitudes or lower temperatures — this is frequently
referred to as Bergmann’s rule, although as originally defined
this pattern was not intraspecific), Foster’s or the island rule
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(smaller species become larger and larger species smaller on
islands compared with mainland areas; Foster, 1964; Adler &
Levins, 1994; Wu et al., 2006), Gloger’s rule (populations of
endothermic animal species in warm and humid areas are
more heavily pigmented than in cool dry areas — pigments are
typically black in warm humid environments, red and yellow
in dry areas, and generally reduced in cool areas; Gloger, 1883;
Lincoln et al., 1982), Jordan’s rule (fish species develop more
vertebrae in a cold environment than in a warm one; Jordan,
1891; Lincoln et al., 1982) and one of Rensch’s rules (popu-
lations of mammal species have larger litters and bird species
larger clutches of eggs in cold climates than in warmer
climates; Rensch, 1938; Lincoln et al., 1982). Views vary as to
whether one should regard all relatively simple spatial patterns
of this kind as constituting ecogeographical rules. Mayr (1956)
reserved the term for geographical gradients in intraspecific
morphological variation, regarding the terms ‘climatic rules’
and ‘ecological rules” as being more all-encompassing. Others
have employed much broader definitions (e.g. Lomolino et al.,
2006a,b).

The second group of spatial patterns are those in interspe-
cific variation. These reflect differences in the traits of species
occurring in different parts of the world. The best documented
examples typically concern variation of traits with latitude,
altitude or depth, although as with intraspecific patterns along
positional gradients these are almost invariably explained in
terms of environmental variation. In some cases the traits are
expressed at the level of the individual organism, mirroring
those examined intraspecifically, with the values typically being
derived as means or medians across multiple individuals (e.g.
body size, metabolic rate, clutch size, thermal tolerance;
Kulesza, 1990; Hawkins & Lawton, 1995; Addo-Bediako et al.,
2000; Bohning-Gaese et al., 2000; Blackburn & Ruggiero, 2001;
Gibert & Huey, 2001; Cardillo, 2002a; Clegg & Owens, 2002;
Cruz et al., 2005; Symonds et al., 2006). In other cases the
traits are expressed at the level of the species (e.g. geographical
range size, population density, global population size; Letcher
& Harvey, 1994; Gaston & Blackburn, 1996; Cardillo, 2002a;
Reed, 2003; Cruz et al., 2005; Symonds et al., 2006). Again,
some interspecific trends have been recognized as classic
ecogeographical patterns, including Allen’s rule (amongst
closely related endothermic vertebrates, forms in warmer
environments have longer appendages; Allen, 1878; Lincoln
et al., 1982) and Bergmann’s rule (amongst closely related
species body size increases with ambient temperature;
Bergmann, 1847).

The final group of spatial patterns are those in assemblage
variation. These are patterns in the structure of the assem-
blages occurring in different places. The simplest are perhaps
spatial patterns in species richness (e.g. Currie, 1991; Rahbek,
1995; Gaston, 2000; Hawkins et al., 2003; Hillebrand, 2004a;
Orme ef al, 2005). Others comprise spatial patterns in
additional aspects of assemblage size and composition, such
as in total abundance, total biomass or total energy use (e.g.
Enquist & Niklas, 2001; Hurlbert, 2004; Pautasso & Gaston,
2005; Evans et al., 2006a), or in the numbers or proportions of
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different functional or behavioural groups (e.g. Newton &
Dale, 1996; Stevens et al., 2003; Heino, 2005; Micheli &
Halpern, 2005). Yet others concern spatial trends in the mean
state of the traits exhibited by those species co-occurring in an
area, such as their body size (e.g. Cushman et al, 1993;
Hawkins, 1995; Hawkins & Lawton, 1995; Blackburn &
Gaston, 1996a; Knouft, 2002; Chown & Klok, 2003; Blackburn
& Hawkins, 2004; Kaspari, 2005; Olalla-Tarraga et al., 2006;
Rodriguez et al., 2006), clutch size (e.g. Yom-Tov, 1994;
Yom-Tov et al., 1994) or geographical range size (e.g. Stevens,
1989; Letcher & Harvey, 1994; Hawkins & Diniz-Filho, 2006;
Orme et al., 2006). Finally, a few studies have examined spatial
variation between assemblages in the nature of frequency
distributions of traits (e.g. body size, geographical range size;
Cardillo, 2002b; Knouft, 2004; Graves & Rahbek, 2005). Spatial
patterns that are manifested through assemblage variation and
that have been regarded by some as ecogeographical rules
include Rapoport’s rule [an increase in range size with latitude
was termed ‘Rapoport’s rule’ by Stevens (1989), following
Rapoport (1982), although it was originally identified much
earlier by Lutz (1921)] and Thorson’s rule (a switch with
increasing latitude in the dominant mode of development of
marine invertebrates from pelagic to direct; Thorson, 1950).

In practice, the distinctions between these different kinds of
patterns are often not made explicit. For example, ‘Bergmann’s
rule’ has variously been tested using intraspecific (e.g. Ashton
et al., 2000; Ashton, 2002; Ashton & Feldman, 2003; Blanc-
kenhorn & Demont, 2004; Meiri et al., 2004a; Blanckenhorn
et al., 2006), interspecific (Freckleton ef al., 2003; Katti &
Price, 2003; Cruz et al., 2005) and assemblage patterns (Roy &
Martien, 2001; Blackburn & Hawkins, 2004; Kaspari, 2005;
Olalla-Tarraga et al., 2006; Rodriguez et al., 2006). The ‘island
rule’ has been tested with intraspecific (e.g. Lomolino, 1985;
Meiri et al., 2004b) and interspecific data (Meiri et al., 2005),
and apparently with combinations thereof (Foster, 1964; Clegg
& Owens, 2002). Rapoport’s rule has been examined using
interspecific patterns (Blackburn & Gaston, 1996b; Orme et al.,
2006) and assemblage patterns (Stevens, 1989; Rohde et al.,
1993). The methodological distinction between intraspecific
and other patterns is well understood, although studies
sometimes state that comparisons were made with a popula-
tion’s nearest relative, which does not necessarily distinguish
intraspecific from interspecific methodologies. Moreover,
interspecific and assemblage patterns have both been referred
to as interspecific patterns (e.g. Roy & Martien, 2001; Cruz
et al., 2005; Olalla-Tarraga et al., 2006; Rodriguez et al., 2006).
The distinction between the two is frequently overlooked, the
contents of the abstracts of many relevant papers do not enable
one to identify the approach used and the implications of this
distinction for the generalities that these different methods
uncover have not been well explored.

The three kinds of spatial patterns — intraspecific, interspe-
cific and assemblage — must interact. Intraspecific patterns are
essentially descriptors of the structure of the geographical
ranges of species (Gaston, 2003). Interspecific patterns reflect
differences in the location of the geographical ranges of species
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exhibiting differences in a particular trait or, put another way,
are derived from the location and the structure of geographical
ranges. Finally, assemblage patterns again reflect differences in
the locations of the geographical ranges of individual species
and the traits that they exhibit, but also the number of ranges
(the range overlaps) in an area. Indeed, one might perhaps
argue both that the geographical range plays a unifying role in
linking spatial patterns together and that a sensible approach
to understanding interspecific and assemblage variation would,
where feasible, be to deconstruct these patterns into their more
basic intraspecific components. In this paper we selectively
review the nature of intraspecific, interspecific and assemblage
spatial patterns, their connections and their mechanisms, and
highlight several significant, outstanding issues.

GEOGRAPHICAL RANGE STRUCTURE AND
R x C MATRICES

Intraspecific, interspecific and assemblage patterns, and their
inter-relationships, can usefully be thought of in terms of
simple species X sites (r X ¢) matrices, in which species are
given in rows (r) and sites (or areas) in columns (c). Indeed,
such matrices may be key to a synthetic view of these patterns.
Traditionally, the entries in such a matrix would either be the
presence/absence of each species in each site, or the population
density of each species in each site (e.g. Simberloff & Connor,
1979; Bell, 2003). However, the approach can be generalized to
any trait of interest. In considering spatial patterns, the sites
can usefully be thought of as sequenced in terms of the
gradient of interest (positional or environmental) (e.g. Lomo-
lino, 1996), although in practice we are often interested in the
relative position of sites along a continuum of that gradient.

Considering a single species first, the variation of a trait
along the gradient (a row of an r X ¢ matrix) is essentially a
pattern in the structure of the geographical range of that
species. Traditionally such structure tends to be thought of in
terms of the presence/absence or local abundance of the
species, but can be conceived of much more generally to
embrace traits as divergent as colour, body size, clutch size and
genetic diversity. Intraspecific patterns are about how ranges
are structured, and the mechanisms underpinning those
patterns are what structure ranges.

Interspecific spatial patterns are based on row sums, means
or, more seldom, variances from a species X sites matrix,
usually just for those sites at which the species is present. These
are plotted against some overall characteristic of the sites that
are occupied by each species, usually their positional midpoint
or some average environmental condition.

Assemblage spatial patterns are based on the column sums,
means or variances of the species X sites matrix, and the
relationships between these variables and other properties of
the sites. Based on species presences and absences across sites
these give patterns in species richness; based on summed
species abundances or biomasses across sites these give
patterns in assemblage size; and based on mean traits such as
species body size, clutch size or abundance, or the frequency
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distributions of such traits, they give patterns in assemblage
structure.

Arguably, four principal outstanding issues pertain to
documenting and understanding spatial patterns at intraspe-
cific, interspecific and assemblage levels, namely: (1) the nature
of patterns in traits, (2) the generality of patterns, (3) the
interactions between patterns in different traits, and (4) models
and mechanisms for patterns. We begin with intraspecific
patterns.

INTRASPECIFIC PATTERNS

The nature of the patterns

Two rather divergent broad theoretical frameworks for the
form of intraspecific patterns have developed. These can be
termed, respectively, the gradient model and the peak model.
In the gradient model, species traits are seen as changing
monotonically along positional gradients (e.g. latitude, longi-
tude, altitude, depth) across the geographical range, usually as
a consequence of species responses to gradients in particular
environmental axes. A wide variety of traits has been explored
in this context (see Introduction). In the peak model, species
traits are seen as changing systematically from the core to the
periphery of the geographical range, such that a roughly central
peak arises, usually as a consequence of trade-offs in the
responses of species to multiple environmental axes (Henge-
veld & Haeck, 1982; Brown, 1984; Lawton, 1993). The primary
traits that have been explored in this context are occupancy,
abundance, temporal variability in abundance, local extinction
and genetic variation (e.g. Brown, 1984; Curnutt et al., 1996;
Green et al., 1996; Doherty et al., 2003; Vucetich & Waite,
2003; Murphy et al., 2006; for reviews see Sagarin & Gaines,
2002; Gaston, 2003; Sagarin et al., 2006).

Although they are easily recognized in the abstract, empir-
ical fit to the gradient and peak models can be more difficult to
ascertain. First, if data are not obtained from across the full
geographical range of a species then sampling of gradients may
be insufficient, and simple trends may be observed where more
complex functions better describe the full pattern (Sagarin &
Gaines, 2002; Gaston, 2003). Second, the fits of data to peak
models can be difficult to ascertain visually, and to test
analytically, and a number of indirect analytical approaches
that have been employed (e.g. autocorrelograms) have not
proved to be sufficiently definitive (Ives & Klopfer, 1997;
Gaston, 2003). Third, the extent to which data fit either model
may vary with the size of the areas over which traits such as
abundance are measured, with perhaps a general tendency for
data collected at larger spatial grains to smooth out local
variations in density and thus result in better model fits
(Blackburn et al., 1999b). Fourth, the extent to which data fit
either model may be influenced by whether trait values at
different sites are treated as distinct data points, or whether
values for sites sharing a similar position (e.g. latitudinal band)
or environment (e.g. temperature range) are averaged, with the
latter tending to favour the detection of simple patterns. Fifth,
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the different populations of a species used in testing for
intraspecific patterns are phylogenetically non-independent
and thus, just as for interspecific comparisons (see below),
phylogenetic comparative techniques should be employed.
This is seldom done at the intraspecific level (but see Angilletta
et al., 2004), and the implications for the patterns that have
been documented remain unknown.

These comments notwithstanding, in general it is becoming
clear that there is far better evidence for the fit of data to
gradient models than to peak ones, and the long-held
supposition that a peak model typifies key aspects of the
spatial structure of geographical ranges is not well supported
(Sagarin & Gaines, 2002; Gaston, 2003; Sagarin et al., 2006); a
similar conclusion may not hold for all traits along environ-
mental axes (Gaston, 2003). Such a conclusion could be taken
to imply that the structure of geographical ranges is commonly
rather simple. However, this is undoubtedly not the case, with
strong suspicions that the literature is heavily biased towards
cases in which such simple structures have been documented.
Certainly, there is a growing number of good examples in
which apparently key variables in the structuring of geograph-
ical ranges exhibit no such simple patterns (see Sagarin et al.,
2006).

Generality

Even accepting the conclusions of empirical analyses at face
value, considerable contention surrounds how widely intra-
specific spatial patterns in given traits generalize across species
(i.e. how similar are the patterns along different rows of an
r X ¢ matrix). There has, for example, been much discussion
of the relative frequency of increases in body size with latitude
and/or temperature, decreases with latitude and/or tempera-
ture, and an absence of any simple pattern (e.g. McNab, 1971;
Chown & Gaston, 1999; Ashton et al.,, 2000; Ashton, 2002;
Meiri & Dayan, 2003; Blanckenhorn & Demont, 2004; Meiri
et al., 2004a). Likewise, how often the local abundances of
species show central peaks and peripheral declines across
geographical ranges has been much debated (Hengeveld &
Haeck, 1982; Brown, 1984; Brown et al, 1996; Sagarin &
Gaines, 2002; Gaston, 2003).

In part, different conclusions result from different views as
to what constitutes a generality. At one extreme, Mayr (1956)
recognized a rule as being constituted if a pattern was
displayed by more than 50% of the species studied. At the
other extreme, one might regard evidence of any exception as
sufficient to prevent an otherwise general pattern from being
regarded as a rule. Most commentators seem to regard each of
these positions as too severe, but what criteria they would find
reasonable as a basis for a rule or a simple generalization
remains unclear (Blackburn et al., 1999a; Lawton, 1999).

In part, different conclusions also result from different views
on the point at which the published set of empirical analyses is
considered adequate to determine the generality of a particular
intraspecific pattern. Invariably, the number of species that
have been studied remains extremely small, and geographically
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and taxonomically highly biased (see below). Thus, grounds
exist for arguing that the current data are inadequate to reach
any conclusions about the generality of patterns. It is unclear,
given the number and variety of extant species, at what point
this would cease to be the case. To complicate matters further,
on the basis of existing evidence the degree of generality may
vary markedly depending on the focal taxonomic group. For
example, the proportion of vertebrate species that follow a
neo-Bergmannian rule (sensu James, 1970) varies from less
than a third of those studied in lizards, snakes and fish to more
than three-quarters in turtles and birds (Millien et al., 2006).
Such differences may be useful in understanding the mecha-
nisms that give rise to patterns.

In fact, many intraspecific patterns seem unlikely to be truly
general because the majority of species have relatively small
geographical ranges. For example, at least a quarter of the
world’s bird species have ranges that are smaller than the area
of Great Britain (Orme et al., 2006). They are therefore often
distributed across relatively narrow ranges of spatial variation
in environmental conditions, and are unlikely to experience
selection that would result in marked intraspecific patterns
(Gaston, 2003; Philimore et al, 2007); narrowly distributed
species on steep environmental gradients would be an obvious
exception. Moreover, gene flow or limited genetic variance
might limit the potential for variation in local adaptation
across the ranges of narrowly distributed species (Blows &
Hoffmann, 2005; Chown & Terblanche, 2007). Indeed, the
choice of focal species with which to investigate spatial patterns
tends to be biased towards those with substantially larger
ranges. This is certainly the case for avian species for which
Bergmann’s rule and latitudinal patterns in clutch size have
and have not been studied (Fig. 1), which could perhaps result
from a bias towards such studies being conducted in northern
temperate regions, where range sizes tend to be larger (Orme
et al.,, 2006). However, it seems likely also to result from a
conscious focus on those species that are expected to exhibit
such patterns.

Interactions

With rather few exceptions, the interactions between different
intraspecific spatial patterns remain poorly understood. This is
despite the fact that, if exhibited by the same species, they
would concern the same individuals occurring in the same
places. One reason that the interactions have largely been
ignored is that patterns in different kinds of traits tend to be
most readily (and therefore are in practice) determined for
different kinds of species. As a broad generalization, morpho-
logical variables have principally been studied for insects and
vertebrates, physiological variables for insects, amphibians and
reptiles, life-history variables for freshwater fish and birds,
population dynamic variables for insects and birds, and genetic
variables principally for plants (phylogeographical studies
embrace a wide diversity of taxa, but primarily concern the
relatedness of individuals across geographical ranges rather
than broader issues of the genetic structure of ranges). Even
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Figure 1 Mean (+95% confidence interval) log;, breeding
geographical range sizes of non-marine bird species for which
studies have (1) and have not (0) reported the results of empirical
analyses for (a) Bergmann’s rule and (b) relationships between
clutch size and latitude, regardless of the outcomes of those
analyses. Species are categorized based on the studies of Berg-
mann’s rule listed by Meiri & Dayan (2003), and an unpublished
collation of studies of latitudinal patterns of clutch size by the
authors. Geographical range sizes are from the data base of Orme
et al. (2006).

where the same taxon is a focus of attention for different kinds
of variables, the same species are seldom considered. For
example, of the six traits typically investigated in studies of
insect environmental physiology (metabolic rate, development
rate, water loss, upper and lower thermal tolerances and
thermoregulation), all six have been investigated in fewer than
five species (Chown et al., 2002). Spatial patterns in traits of
multiple types have thus been examined for rather few species
(but see Klok et al., 2003; Angilletta et al., 2004; Heibo et al.,
2005; Rinde & Sjotun, 2005; Lardies & Bozinovic, 2006).

The foremost vertebrate exception is doubtless the house
sparrow, Passer domesticus. Being widespread, often relatively
abundant and occurring in close proximity to humans, the
species was the subject of natural history and basic ecological
studies in the late 1800s and early 1900s (e.g. Bumpus, 1899).
Building on this work, and fresh data collection, studies in the
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1970s in particular established several spatial patterns in its
traits (e.g. Pinowski & Kendeigh, 1977). In part this was
motivated by concerns over the house sparrow’s status as a
pest species. In part it was also spurred by the opportunities
that the rapid and dramatic spread of the species in North
America presented for contrasting patterns in the native and
introduced parts of its geographical range. Subsequently,
extensive work has been conducted using the house sparrow
as a model organism for examining many physiological,
behavioural and ecological issues. For this species, spatial
patterns have been investigated in morphological traits (John-
ston & Selander, 1964, 1973; Johnston, 1969; Baker, 1980;
Fleischer & Johnston, 1982; Murphy, 1985), physiological
traits, mainly metabolic rate and immune function (Thread-
gold, 1960; Blem, 1974; Kendeigh, 1976; Martin et al., 2004,
2005), life-history traits (Dyer et al., 1977; Murphy, 1978;
Anderson, 1994; Baker, 1995) and genetic traits (Johnston &
Klitz, 1977; Parkin & Cole, 1985; Bjordal et al., 1986). Even so,
whilst major reviews have sought to bring much of this
material together (Summers-Smith, 1988; Anderson, 2006),
and similar environmental variables have been proposed to
explain the trends in many traits, the connections between the
different patterns have been little explored.

Amongst terrestrial invertebrates, the model organism
Drosophila melanogaster is one of the most widely investigated
(Singh & Long, 1992; Hoffmann et al., 2003). The ease with
which it can be collected and reared, as well as a comprehen-
sive and growing body of data on its biology and evolution,
including a recently sequenced genome, arguably made and
continue to make the species tractable (Powell, 1997; Adams
et al., 2000). Like the house sparrow, its colonization of a wide
variety of regions has undoubtedly also spurred many studies.
Spatial variation in a wide variety of traits has been
investigated, resulting in a substantial literature. Investigations
of morphological variation include body size and wing size
clines (David & Bocquet, 1975; James et al., 1997; Van’t Land
et al., 2000), physiological traits include thermal biology,
water balance and ethanol tolerance (Cohan & Graf, 1985;
Hoffmann et al., 2001, 2002, 2003; Bubliy et al., 2002), life-
history traits include development rate, male sterility, inci-
dence of diapause, fertility and longevity (James & Partridge,
1995; Mitrovski & Hoffmann, 2001; Rohmer et al., 2004;
Schmidt et al., 2005; Sgro et al., 2006) and a variety of genetic
traits has been studied (van Delden & Kamping, 1997; Van’t
Land et al., 2000; Verrelli & Eanes, 2001; Frydenberg et al.,
2003; Umina et al., 2005). Recent work has begun to explore
the relationships between clinal variation in molecular mark-
ers, morphological traits and biochemical and physiological
variation (Gockel et al., 2002; de Jong & Bochdanovits, 2003;
Sezgin et al., 2004; Rako et al., 2006). Perhaps unsurprisingly,
clinal variation in population dynamics has been less well
scrutinized.

Even in these two well-studied species the interactions
occurring between spatial patterns in different traits that will
arise from constraints and trade-offs in trait development have
rarely been explicitly studied.
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Models

The combination of a heavy focus on the possible generality of
individual intraspecific patterns and a paucity of studies of
how different patterns for the same species might interact has
resulted in the development of rather distinct literatures
exploring the mechanisms underlying different kinds of
intraspecific patterns. This is despite some evident common-
alities in the postulated mechanisms, and the fact that different
patterns concern the same individual organisms. For example,
geographical clines in body size have variously been postulated
to result from the following broadly classified mechanisms:
(1) the thermodynamics of heat conservation (Bergmann,
1847) and dissipation (Brown & Lee, 1969); (2) factors (such
as primary productivity, starvation resistance, seasonality,
competition and their interactions) that are ultimately
concerned with interactions between the size dependences of
production rate and mortality rate (Rosenzweig, 1968; Roff,
1980; Lindstedt & Boyce, 1985; Kozlowski et al., 2004); (3)
amongst ectotherms, a physiological by-product of the effects
of temperature on cell division and replication or on growth
and differentiation leading to positive correlations between cell
size and animal size (Partridge et al, 1994; van der Have &
de Jong, 1996; Starostova et al., 2005; Walters & Hassall, 2006);
and (4) covariation between body mass and other traits that
have selective advantages at high latitudes (Cushman et al.,
1993). Likewise, latitudinal trends in clutch size have been
argued to result from: (1) thermodynamic factors related to
the cost of heating eggs and maintaining the incubation
temperature (Sanz, 1999; Reid et al., 2000); (2) the effects of
temperature on egg viability (Stoleson & Beissinger, 1999;
Cooper et al., 2005); (3) factors (such as food availability, day
length and seasonality; Lack, 1947; Martin, 1987; Ashmole,
1963) that are ultimately concerned with the interactions
between resource availability, reproductive effort and mortal-
ity; and (4) nest predation rates (Skutch, 1949).

Variation in progeny size in arthropods has been attributed
to a similar variety of mechanisms (Fox & Czesak, 2000). The
plethora of putative mechanisms that have been suggested to
drive these intraspecific patterns is not unusual in geograph-
ical-scale studies, and highlights the difficulties associated with
providing conclusive evidence for any one mechanism (Gaston
& Blackburn, 1999). However, few studies have attempted to
disentangle these mechanisms by examining their predictions
either within strong inference, hypothesis testing (Huey et al.,
1999) or information theoretic model selection (e.g. Johnson &
Omland, 2004) frameworks. In general, it is highly likely that a
particular pattern will arise through a number of processes
whose relative contributions may vary both spatially and
taxonomically.

No generic models exist as yet that link intraspecific patterns
in the different kinds of species traits that have been
investigated. Rather attention has principally been paid to
how each trait responds to environmental variation and why,
with variation in one or more of the other sets of traits often
assumed to be of significance. It seems likely, however, that
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considerable progress might be made in understanding the
determinants of these patterns by focusing attention on how
these different sets of traits themselves interact across space
(positional or environmental), especially given that investiga-
tions of subsets of the possible interactions have resulted in
such progress (e.g. Brown et al., 2004; Koztowski et al., 2004).
Taking the four broad types of traits (morphology, physiology,
life history and population dynamics), models have been
developed for aspects of each of the six pair-wise combinations
of trait type: morphology and physiology (van der Have & de
Jong, 1996; West et al., 2001; Koztowski et al., 2003; Makarieva
et al., 2005), morphology and life history (Abrams et al., 1996;
Economo et al., 2005; Walters & Hassall, 2006), morphology
and population dynamics (Abrams, 1994; van Kooten et al.,
2004), physiology and life history (Sibly & Calow, 1986;
Gilchrist, 1995; Ricklefs & Wikelski, 2002; Voituron et al.,
2002; Savage et al., 2004; Frazier et al, 2006; Lardies &
Bozinovic, 2006), physiology and population dynamics (Lynch
& Gabriel, 1987; Kingsolver, 1989; Dunham, 1993; Ives &
Gilchrist, 1993; Murdoch, 1993; Crozier & Dwyer, 2006) and
life history and population dynamics (Roff, 2002; Koons et al.,
2006; Stahl & Oli, 2006). For each combination much more
model development is required, especially in a spatial context.
Such spatially explicit modelling is likely to be complex given
that it should ultimately take interactions between migration,
environmental variance, phenotypic plasticity and cross-
environment genetic correlations into account (Chown &
Terblanche, 2007), especially if the goal is to understand
geographical range structure.

INTERSPECIFIC PATTERNS

The nature of the patterns

Interspecific patterns typically concern single values of traits
for each of a number of species, usually belonging to a single
taxon or clade. In most cases these traits are expressed at the
level of the individual organism, and a mean or median value
across a sample of individuals for each species is used. These
values can thus be thought of as representing some measure of
central tendency of a pattern of intraspecific variation in the
trait of interest (a row of an r X ¢ matrix). If, on average, all
species exhibited similar spatial patterns of variation in a trait
across their geographical ranges, then interspecific patterns
would essentially capture the scaling of this variation with
changes in environmental conditions.

The implicit assumption tends to be made that this
intraspecific variation is much smaller than the observed
interspecific variation, and that the former can therefore
reasonably be ignored. However, plainly, circumstances exist
under which this is not so, and the interplay between
intraspecific and interspecific patterns may be vitally impor-
tant in understanding mechanisms. Intraspecific and inter-
specific spatial variation in a trait are expected to be more
similar when: (1) species are closely related, and thus more
likely to respond to environmental conditions in similar
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ways; and (2) one or more species have very large
geographical ranges and thus include different individuals
that experience a range of environmental conditions similar
to that experienced by the entire suite of species. In this
regard it is noteworthy that, following earlier comments
about the influence of geographical range size on the
expression of intraspecific patterns, interspecific patterns are
sometimes only apparent, or are stronger, amongst the more
widely distributed species (e.g. Ruggiero & Lawton, 1998;
Blackburn & Ruggiero, 2001).

In testing, and explaining, interspecific spatial patterns
much more attention needs to be paid to the manner in which
species-specific trait data are collated. Typically such data are
averaged across a very small number of individuals. For
example, in the most comprehensive collation of data on avian
species body mass, the values for each species are averaged over
a mean of 70 individuals and a median of just 10 (Olson et al.,
unpublished data). These individuals may not be representa-
tive of the species as a whole, particularly if they originate from
a limited portion of the species’ range. The downstream
consequences of such a lack of representativeness have been
explored in other contexts (e.g. McKechnie & Wolf, 2004;
Farrell-Gray & Gotelli, 2005).

Attention also needs to be paid to the variable used to
characterize the positions of the geographical ranges of species
in geographical or environmental space (Blackburn & Haw-
kins, 2004). Typically this is the midpoint of the geographical
range (latitudinally or gravitationally) or the conditions at that
midpoint (e.g. Ruggiero & Lawton, 1998; Cardillo, 1999;
Blackburn & Ruggiero, 2001; Orme et al., 2006). However, it
seems doubtful that this serves to characterize much about
the distribution of a species, and progressively less so as the
geographical range of the species becomes larger (and
the likelihood of intraspecific patterns being expressed poten-
tially increases). More sophisticated methods would seem
desirable.

Generality

The availability of data with which to test for interspecific
spatial patterns exhibits marked taxonomic biases. For exam-
ple, and again concerning avian species, even at the family level
data on such a fundamental trait as body size is not available
for 9% of the world’s avian families, with this value increasing
to 18% of families for an estimate of annual fecundity (Bennett
& Owens, 2002). The magnitude of such gaps in our
knowledge of trait values increases markedly if one considers
the species level; for example, body-size data are only available
for 77% of the world’s bird species (Olson et al., unpublished
data). Trait data are more likely to be missing for tropical
species and those with small ranges, and this raises concerns
regarding the extent to which interspecific patterns can be said
to generalize. More positively, estimates of the geographical
range sizes for nearly all of the extant species in some
vertebrate classes have recently been made (Ceballos et al.,
2005; Grenyer et al., 2006; Orme et al., 2006).
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Arguably as a consequence of these constraints, empirical
studies of spatial patterns in trait variation at the interspecific
level are much scarcer than those of intraspecific and
assemblage variation. As a result of these issues it seems
premature to assess the likely generality of almost any of the
interspecific patterns that have been documented. The most
marked exception is examination of latitudinal trends in range
size. Whilst several patterns have been described, at best the
relationship between latitude and range size appears to be weak
(e.g. Orme et al, 2006; see below for a discussion of
assemblage level patterns in range size). A number of
interspecific studies have also demonstrated positive relation-
ships between clutch size and latitude, but even here the many
hundreds of species studied comprise a relatively small
proportion of the total (Lack, 1948; Kulesza, 1990; Bohning-
Gaese et al., 2000; Cardillo, 2002a). Similarly, even though
several studies have investigated intraspecific patterns in body
size, far fewer have investigated such patterns at the interspe-
cific level (but see Hawkins & Lawton, 1995; Cardillo, 2002a).
Therefore, even for the most thoroughly investigated traits, the
generation of an additional and taxonomically diverse range of
case studies, followed by a formal meta-analysis, is required
before firm conclusions can be reached regarding generalities.

Interactions

Given the relative paucity of empirical examples of interspe-
cific spatial patterns, little is known about the interactions
between these patterns (but see Cartron et al., 2000). However,
this could readily be resolved if, in increasing the numbers of
such examples, care was taken to focus particularly on case
studies for which combinations of morphological, physiolog-
ical, life-history and/or population dynamics variables could be
measured on the same spatial or environmental gradients.

Models

The more similar the intraspecific and interspecific spatial
patterns in traits in which intraspecific variation exists, and the
more obviously interspecific patterns simply extend the
intraspecific, the more likely it is that common mechanisms
underlie the two. The mechanisms discussed as potentially
underpinning latitudinal gradients in body size, for example,
tend to be broadly the same at intraspecific and interspecific
levels (e.g. Jones et al., 2005; Makarieva et al., 2005; Herfindal
et al., 2006; Rodriguez et al., 2006). However, differences exist.
Whilst variation in dispersal ability related to body size has
been proposed as one possible mechanism driving interspecific
patterns (Newton & Dale, 1996; Blackburn & Hawkins, 2004),
this would seem unlikely to apply at an intraspecific level.
Likewise, whilst studies of both intraspecific and interspecific
latitudinal patterns in clutch size have focused on the roles of
food availability, seasonality and predation risk (e.g. Koenig,
1984; Martin et al., 2000; Evans et al., 2005a), investigations
focusing on the impacts of clutch cooling and heating (see
above) have to date only been applied intraspecifically
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(Stoleson & Beissinger, 1999; Reid et al., 2000; Cooper et al.,
2005, 2006). However, for body size, clutch size and other
traits, studies are largely wanting that document both intra-
specific and interspecific spatial patterns for the same sets of
species, and thus enable the two levels of variation to be
contrasted (although the species-level heritability of intraspe-
cific patterns has been explored; e.g. de Queiroz & Ashton,
2004). Understanding of spatial patterns in interspecific
variation in traits that are expressed at the level of the
individual obviously necessitates a phylogenetic framework,
and consideration of the statistical non-independence of
species as data points (Harvey & Pagel, 1991). These traits
are likely to be more similar amongst closely related than
distantly related species. Given that the same will be true of
more closely related populations of a given species, a
phylogenetic framework would be the most logical format
within which simultaneously to examine intraspecific and
interspecific spatial patterns in a trait.

In other interspecific patterns, the traits are expressed at the
level of the species. A key issue here has also proven to be the
degree of phylogenetic constraint on these traits. Because of
the level at which they are expressed, such phylogenetic
constraints arise from species selection. Attention has partic-
ularly focused on the heritability of geographical range sizes.
Here, studies have variously reported statistical significance or
non-significance in the correlations between the range sizes of
ancestor—descendant species pairs or sister species pairs, in the
proportions of variance in species range sizes explained at
higher taxonomic levels or in phylogenetic autocorrelations in
range sizes (e.g. Jablonski, 1987; Gaston, 1998; Webb &
Gaston, 2003, 2005; Martinez-Meyer et al., 2004; Pfenninger,
2004; Hunt et al., 2005). The evidence would seem to favour a
lack of significant heritability, but interpretations have varied
and recent reviews have reached divergent conclusions (e.g.
Gaston, 2003; Webb & Gaston, 2003, 2005; Hunt et al., 2005).
Regardless of this, when statistically significant patterns are
found they seem not to be sufficiently marked to have
biological significance (Webb & Gaston, 2005). This is
important because it suggests that if the expression of
intraspecific patterns in traits is, in part at least, a function
of geographical range size (see above), then these patterns may
nonetheless occur across a diversity of taxonomic groups.

ASSEMBLAGE PATTERNS

The nature of pattern

In some cases, most notably that of geographical range size, the
difference between interspecific and assemblage spatial pat-
terns has been framed in methodological terms. Thus, tests for
a gradient of increasing geographical range size with increasing
latitude, altitude or depth have employed one of three
methods: analysing variation in the mean geographical range
sizes of species in an area (e.g. Stevens, 1989; Arita et al., 2005),
in the mean range sizes of those species whose geographical
midpoint falls in an area (midpoint method; e.g. Rohde et al,,
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1993; Reed, 2003) or treating each species as a separate data
point (e.g. Blackburn & Gaston, 1996b; Orme et al., 2006). The
first two plainly document assemblage patterns, whilst the last
one documents an interspecific pattern. Nonetheless, they are
all related and the expression of one pattern must constrain the
possibilities for the others, in that all are founded on the same
species X sites (r X ¢) matrix. However, the first method
documents the average expression of a trait in an area, the
second the average expression of that trait in an area for a
subset of species and the third the average expression of a trait
by a species. None of the approaches is any more correct than
the others as they address different issues, although arguments
have been made for the superior merits of interspecific and
assemblage pattern analyses (e.g. Cardillo, 2002a; Blackburn &
Hawkins, 2004).

This said, in establishing assemblage spatial patterns many
of the same issues apply as for interspecific patterns. For
example, as with interspecific patterns, frequently when using
mean traits to establish assemblage patterns the state of the
trait is treated as being constant throughout the geographical
range of a species, effectively assuming that intraspecific
patterns do not exist.

Generality

The generality of assemblage patterns based on species richness
has attracted the most extensive and intensive scrutiny of
spatial patterns at intraspecific, interspecific or assemblage
levels. Qualitative, semi-quantitative and/or formal meta-
analyses exist for most of the key patterns in richness including
the increase in species richness at low latitudes (Hillebrand,
2004a,b), altitudinal patterns (Hodkinson, 2005; Rahbek,
2005), mid-domain effects (Zapata et al., 2003; Colwell et al.,
2005), the species—area relationship (Drakare et al., 2006) and
species—energy relationships (Waide et al., 1999). Nonetheless,
disputes persist as to the typical form taken by some such
patterns and the circumstances under which other forms
occur. One of the most prominent examples is the debate
regarding whether species—energy relationships are typically
hump-shaped or linear, and the effects of spatial scale on the
predominance of the different forms (Waide et al, 1999;
Mittelbach ef al., 2001, 2003; Whittaker & Heegaard, 2003;
Gillman & Wright, 2006).

Empirical studies of spatial patterns in other aspects of
assemblage size and composition, such as in total abundance,
total biomass or total energy use, or the numbers or
proportions of different functional or behavioural groups,
have accumulated much more slowly. However, it is clear that
the existence of some such patterns is predicted from
particular mechanisms that have been suggested to explain
spatial patterns in species richness, which has motivated much
more work in this area (e.g. Kaspari et al., 2003; Hurlbert,
2004; Evans et al., 2005b, 2006b; Pautasso & Gaston, 2005).

As with intraspecific patterns, there is still contention over
the generality in several assemblage patterns based on the mean
state of the traits exhibited by those species co-occurring in an
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area (e.g. body size: Cousins, 1989; Blackburn & Gaston,
1996a; Blackburn et al., 1999a; Blackburn & Hawkins, 2004;
Rodriguez et al., 2006; geographical range size: Stevens, 1989;
Gaston et al., 1998; Orme et al., 2006). One important issue
has repeatedly arisen here, has been suggested to be important
in understanding the patterns of species richness (Darlington,
1957; Marquet et al., 2004) and applies equally to spatial
patterns in other aspects of assemblage size and composition.
This is the extent to which particular patterns are shaped by
spatial or environmental changes in the contribution of
different clades to an assemblage, and the extent to which
the component clades themselves exhibit the patterns (Haw-
kins & Lawton, 1995). In other words, the extent to which
assemblage patterns generalize to the component clades. In
some instances one or more of the component clades
themselves do not seem to demonstrate the overall pattern,
or do so much less strongly (Astorga et al., 2003; Real et al.,
2003; Hawkins et al., 2006), whilst in other cases all clades
behave in a similar fashion. This variation between clades in
the demonstration of ecogeographical rules can be useful in
assessing the underlying processes generating the occurrence,
or lack, of such patterns.

Interactions

The potential interactions between different spatial assemblage
patterns have been integral to many attempts to try to
understand the mechanistic basis of these patterns. For
example, there has been much discussion of the covariation
between spatial patterns in assemblage biomass, total numbers
of individuals, species richness, mean body size and geograph-
ical range size, with causal connections having been proposed
between many pairs of these patterns (e.g. Brown, 1995;
Gaston & Blackburn, 2000; Blackburn & Gaston, 2003). In
many cases, these links have a foundation in theory (Blackburn
& Gaston, 2001). However, not infrequently the expected
covariation between two characteristics of assemblages in space
is argued from knowledge of the spatial patterns that the two
display. Unfortunately, unless these latter patterns are partic-
ularly marked, such arguments prove to be rather weak. The
likely correlation, for example, between variables x and z is
only predictable from the correlations between x and y and
between y and z if these last two are strong; Cartron et al.
(2000) provide a more detailed discussion of the mathematical
constraints on patterns of covariation.

Models

Whilst interspecific patterns usually have a marked phyloge-
netic non-independence of data points, assemblage patterns as
most commonly expressed usually have a marked spatial non-
independence (Gaston & Blackburn, 2000). This spatial non-
independence comes from two sources. First, areas closer
together are likely to experience more similar environmental
conditions. Second, areas closer together are likely to share
more species. This latter issue highlights the more general
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question of which species contribute most to assemblage
patterns. Intuitively, it was long held that species richness
patterns, for example, were largely determined by the more
narrowly distributed species. However, recent analyses have
shown the converse to be the case, with the more widespread
species accounting for the bulk of patterns of species richness
(Jetz & Rahbek, 2002; Lennon et al., 2004) and being more
strongly associated with patterns of spatial variation in
environmental conditions (Evans et al., 2005¢; Rahbek et al.,
2006). Similar results have also been found for patterns of
spatial turnover in species composition (Gaston ef al., 2007).
This greater contribution of widespread species thus matches
the situation regarding the relative strength of intraspecific
patterns, which are likely to be stronger for widespread species
as these experience greater environmental variation and local
adaptation (see above). The extent to which the more
widespread species shape other assemblage patterns remains
unknown, but it would seem quite likely that this is the case.
For assemblage patterns based on the summed abundances or
biomasses of species in an area, this would follow from the
general positive interspecific abundance-range size relation-
ship (Gaston et al., 2000; Gaston, 2003). For patterns based on
the average expression of a trait in an area, it may follow from
the disproportionate contribution of trait values to different
areas (recognizing that the more widespread species typically
do not occupy all or even most areas).

CONCLUSIONS

Despite a vast literature concerning geographical patterns in
biological traits, a synthetic understanding of these patterns
remains elusive. Significant steps towards such a synthesis
include understanding: (1) the different kinds of patterns
(intraspecific, interspecific and assemblage) and the distinc-
tions between them; (2) the unifying role that geographical
ranges play in linking the patterns together; (3) that this
unification can be obscured by the methodological assump-
tions made in documenting some patterns (e.g. assuming that
intraspecific variation does not significantly influence inter-
specific and assemblage patterns in traits); (4) the need for
further development of models linking different types of traits;
(5) the implications of other methodological issues for the
nature of observed patterns (e.g. how ranges are located on
positional or environmental axes for interspecific patterns);
(6) the nature of the generality of documented patterns at all
levels, and particularly the difference between the frequency
with which patterns are documented in the literature and the
variety of extant species; and (7) the constraints that the form
of intraspecific patterns place on interspecific and assemblage
patterns, and that interspecific patterns place on assemblage
patterns.
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